If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=361=442
We move all terms to the left:
x^2-(361)=0
a = 1; b = 0; c = -361;
Δ = b2-4ac
Δ = 02-4·1·(-361)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-38}{2*1}=\frac{-38}{2} =-19 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+38}{2*1}=\frac{38}{2} =19 $
| 3|x+5|=42 | | 12x^=300 | | 12x2=300 | | 6x-18=14x+48 | | -2x+3=9-17 | | -24.3+3x=13.2 | | 55x-88=0 | | 5(3m-4)=4 | | 12=7+u/31.25 | | x+9=−4x+39 | | 2(40/9)+5y=30 | | 5x-24=88 | | 2(4.444)+5y=30 | | 1=x/9=4 | | 5^x-3^x=16 | | 8(x-4)=-2(x=6) | | -10x=20+9x | | H=6+75t-16t^ | | H=7+60t-16t^ | | 4(x+4)=3x=9 | | 3(x-1.8)=-2+1 | | 2=3-3x/6 | | 50=50-10x | | u÷2=1.8 | | 5x+8=7-x | | 17x–7x=0 | | -x+10+8x+2x=17 | | 3x-8+x=12 | | 3x+(x+4)=110 | | y-47+3=-30 | | 5x=-(15/4) | | 4p-3(-17)=21 |